3.135 \(\int \frac{\sec ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=145 \[ -\frac{75 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{9 \tan (c+d x)}{4 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{\tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac{13 \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(-75*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - (Sec[c + d*x]
^2*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + (13*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + (9
*Tan[c + d*x])/(4*a^2*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.308829, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3816, 4008, 4001, 3795, 203} \[ -\frac{75 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{9 \tan (c+d x)}{4 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{\tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac{13 \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-75*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - (Sec[c + d*x]
^2*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + (13*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + (9
*Tan[c + d*x])/(4*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3816

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2))/(f*(2*m + 1)), x] + Dist[d^2/(a*b*(2*m + 1)), In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]
)

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac{\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{\int \frac{\sec ^2(c+d x) \left (2 a-\frac{9}{2} a \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{\int \frac{\sec (c+d x) \left (-\frac{39 a^2}{4}+9 a^2 \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{9 \tan (c+d x)}{4 a^2 d \sqrt{a+a \sec (c+d x)}}-\frac{75 \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{9 \tan (c+d x)}{4 a^2 d \sqrt{a+a \sec (c+d x)}}+\frac{75 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac{75 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{9 \tan (c+d x)}{4 a^2 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.707526, size = 125, normalized size = 0.86 \[ \frac{\tan (c+d x) \left (\sqrt{1-\sec (c+d x)} \left (32 \sec ^2(c+d x)+85 \sec (c+d x)+49\right )-150 \sqrt{2} \cos ^4\left (\frac{1}{2} (c+d x)\right ) \sec ^2(c+d x) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )\right )}{16 d \sqrt{1-\sec (c+d x)} (a (\sec (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((-150*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^4*Sec[c + d*x]^2 + Sqrt[1 - Sec[c + d*
x]]*(49 + 85*Sec[c + d*x] + 32*Sec[c + d*x]^2))*Tan[c + d*x])/(16*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x
]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.164, size = 316, normalized size = 2.2 \begin{align*} -{\frac{ \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{32\,d{a}^{3} \left ( \sin \left ( dx+c \right ) \right ) ^{5}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( 75\,\sin \left ( dx+c \right ) \ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+150\,\sin \left ( dx+c \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \cos \left ( dx+c \right ) +75\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +98\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}+72\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-106\,\cos \left ( dx+c \right ) -64 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/32/d/a^3*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(75*sin(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+150*sin(d*x
+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin
(d*x+c))*cos(d*x+c)+75*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+98*cos(d*x+c)^3+72*cos(d*x+c)^2-106*cos(d*x+c)-64)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.03906, size = 1079, normalized size = 7.44 \begin{align*} \left [-\frac{75 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{-a} \log \left (-\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \,{\left (49 \, \cos \left (d x + c\right )^{2} + 85 \, \cos \left (d x + c\right ) + 32\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, \frac{75 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) + 2 \,{\left (49 \, \cos \left (d x + c\right )^{2} + 85 \, \cos \left (d x + c\right ) + 32\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(75*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)
/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(49*cos(d*x + c)^2 + 85*cos(d*x + c) + 32)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d),
 1/32*(75*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*(49*cos(d*x + c)^2 + 85*cos(d*x + c) + 32
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3
*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral(sec(c + d*x)**4/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [A]  time = 9.51116, size = 292, normalized size = 2.01 \begin{align*} -\frac{\frac{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left ({\left (\frac{2 \, \sqrt{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{17 \, \sqrt{2}}{a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - \frac{83 \, \sqrt{2}}{a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a} + \frac{75 \, \sqrt{2} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*((2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/(a^2*sgn(tan(1/2*d*x + 1/2*c)^2
- 1)) + 17*sqrt(2)/(a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))*tan(1/2*d*x + 1/2*c)^2 - 83*sqrt(2)/(a^2*sgn(tan(1/2
*d*x + 1/2*c)^2 - 1)))*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 - a) + 75*sqrt(2)*log(abs(-sqrt(-a)*tan(
1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d